Teaching the Nature of Science through Gizmos: A Digital 5E Lesson Plan

FEEC 2022 Conference

12:20 pm – 1:10 pm, Friday, February 25th

Kelsey Beeghly, M.A.T.
How do we define the nature of science?
The Nature of Science

• “how the body of public knowledge called science has been established and is added to; what our grounds are for considering it reliable knowledge; how the agreement which characterizes much of science is maintained” (Driver et al., 1996)
Nature of Science Misconceptions

- Hypotheses are only valuable if they are supported by the results of an experiment.
- Experiments are the only type of scientific investigation.
- All investigations in science are experiments.
- Results of a single experiment can "prove" a hypothesis.
- Experiments don't need to be repeated.
- Investigations that don't reach a firm conclusion are useless.
Nature of Science on the FSA

Statewide, only 47% of 5th graders and 48% of 8th graders passed their science statewide assessment in 2021.
Digital Learning

• More and more digital learning taking place in our classrooms

• Difficult to engage students in conducting experiments
Virtual Labs

• Ease of use
• Grade level and content
• Teacher resources
Gizmos

• The Gizmos “Growing Plants” is a relatively simple simulation where students can manipulate four different variables to observe their effect on plant growth

• Growing Plants provides all students with everything they need to plan and carry out a controlled experiment
5E Lesson
Plant Battle
Creating an Account on Gizmos

Step 1: Create account on Gizmos using the teacher class code “RKNLR2” and the instructions on the right

Step 2: Make a copy of the Student Handout at https://bit.ly/gizmoplant
Design a controlled experiment to test how a single factor affects plant growth.

Options:
- Students work alone
- Students work in partners
- Students work in groups with assigned roles
Explain

• Students share the results of their experiment

• Which condition of their independent variable was the best for your plant type?

Optimal Conditions for Plant Growth

<table>
<thead>
<tr>
<th></th>
<th>Turnip</th>
<th>Tomato</th>
<th>Bean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light (High,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>medium, low,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or none)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fertilizer or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>none</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water (mL)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Students can apply their knowledge of experimental design in many different situations

• Mythbusters clips
• Spongebob examples
• Designing experiments to help solve relevant problems in their lives (as a lead in to Science Fair)
Exit Ticket

You stumbled into a lab where you observe this experimental setup.
1. Write an experimental question this person might have been trying to answer
2. Write a possible hypothesis they were testing
3. Identify their independent variable, dependent variable, controlled variables
4. Which plant (A, B, C, or D) is their control group?
Example Student Work - Level 1

Now you will design and conduct your own controlled experiment!

2. Experimental Question: (For example: What is the effect of Independent Variable on Dependent Variable?)
 - When adding too much water to the seed, the seed will grow and not just water will effect the seed it's also the light

3. Independent Variable:
 - The amount of light, the amount of water

4. Dependent Variable:
 - The type of seed

5. Controlled Variables (constants) *Include at least 3:
 - The flower pot and the ruler

6. Which pot is your control group? (This is the group that does not receive the experimental treatment, or the group under “normal” conditions)
 - Plant B

8. Take a screenshot of your experimental setup and insert it below.
2. Experimental Question: (For example: What is the effect of Independent Variable on Dependent Variable?)
 How does the amount of water affect the plant growth?

3. Independent Variable:
 water

4. Dependent Variable:
 Plant growth

5. Controlled Variables (constants) *Include at least 3:
 Water, light, soil

6. Which pot is your control group? (This is the group that does not receive the experimental treatment, or the group under “normal” conditions)
 Pot a

7. Hypothesis:
 The plant will grow slower if it has less water and light

8. Take a screenshot of your experimental setup and insert it below.
Example Student Work - Level 3

Now you will design and conduct your own controlled experiment!

2. Experimental Question: (For example: What is the effect of Independent Variable on Dependent Variable?)

 What is the effect of different types of nutrients on bean growth (in height)?

3. Independent Variable:

 Types of nutrients

4. Dependent Variable:

 Bean growth (in height)

5. Controlled Variables (constants) *Include at least 3:

 1. Daily water (50 mL)
 2. Amount of lights (3)
 3. Seed type (Beans)
 4. Amount of soil

6. Which pot is your control group? (This is the group that does not receive the experimental treatment, or the group under "normal" conditions)

 The first pot is my control group. It follows all of the controlled conditions, but does not have fertilizer or compost.

8. Take a screenshot of your experimental setup and insert it below.
5E Lesson Plans

• Grades 6-8: https://bit.ly/gizmo68

• Alternative, free simulation where students can conduct a controlled experiment similarly: http://amrita.olabs.edu.in/?sub=79&brch=16&sim=126&cnt=4
Questions?

Kelsey Beeghly, M.A.T.
Science Education
Doctoral Student
Kelsey.Beeghly@ucf.edu
References